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sponds to the introduction of a second parameter,
both being correlated by a ratio of approximately 4: 1.

Qualitatively, the narrow Gaussian models primary
extinction and the four-times-wider Gaussian models
secondary extinction. There is no physical reason for
the constraint of the ratio of 4:1 for the half-widths
of the two Gaussians as imposed by the assumption
of a Lorentzian mosaic distribution. The model
should become much more flexible if the ratio of the
half-widths is a free parameter in some fixed limits.
Additionally the relative normalization of the two
Gaussians can be introduced as a free parameter
under the natural constraint that the sum of the two
must normalize to 1.
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Abstract

A general method for producing efficient algorithms
to evaluate finite Fourier transforms that fully utilize
symmetry to reduce both computing time and space
requirements is described. The method is applicable
to all space groups. The resulting algorithms retain
the ‘N log N’ behavior of the fast Fourier transform
while reducing the size of the data to approximately
an asymmetric unit. The algorithm for the p3 and P3
groups is shown.

0108-7673/88/040467-12$03.00

I. Introduction

The standard method for efficiently computing three-
dimensional finite Fourier transforms is by Cooley-
Tukey and Good-Thomas algorithms. Ten Eyck
(1973) in his pioneering work on crystallographic fast
Fourier transforms showed how certain groups of
crystallographic symmetries could be combined with
such algorithms to reduce the computational burden.
There are two main features of the Ten Eyck
algorithms: (1) the groups of symmetries must carry

© 1988 International Union of Crystallography
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the sample points onto themselves; and (2) when we
reduce the finite Fourier transform to the asymmetric
unit, they can still be evaluated by the above efficient
algorithms. Ten Eyck pointed out that his methods
will not work for general crystallographic groups.

Basically the Cooley-Tukey and Good-Thomas
algorithms use the additive properties of the integers.
In recent years, starting with an idea of Rader (1968),
Winograd (1978) has developed new algorithms for
efficiently computing finite Fourier transforms based
on the ‘multiplicative’ properties of the integers. In
this paper we will show how multiplicative algorithms
match with crystallographic symmetry groups to pro-
duce efficient finite Fourier transforms when restric-
ted to the asymmetric unit for P3. In subsequent
papers we will show how these algorithms can be
made to work for all crystallographic groups.

Our approach is based on standard ideas used in
the study of crystal symmetries: groups acting on
spaces, equivalent points and asymmetric units. The
essential new ingredient in our approach is to intro-
duce what we call multiplicative groups M (these
come from the multiplicative properties of the
integers), an ordering of the elements of M, a group
CM built from the group P3 and M, and tensor
skew-circulant matrices. In an extremely abridged
form our method consists of finding equivalent points
and an asymmetric unit for the group CM acting on
the sample points. This information, combining with
the ordering on M, enables us to structure the finite
Fourier transform restricted to the P3 asymmetric
unit so that it breaks into blocks of tensor skew-
circulant matrices which by Winograd theory can be
computed efficiently.

In this paper we will carry out this program in two
stages. Stage 1 will treat the two-dimensional space
group p3 acting on 5 X 5 points, which although a toy
example does let us show in a simple setting many
of our ideas. Stage 2 will consist of a treatment of
P3 acting on 60x60x 60 points. We have chosen a
presentation of stage 2 that shows all of the ideas in
our approach, but we have omitted many of the
technical details that are necessary when one really
writes computer code. The technical computer coding
ideas will be presented in a subsequent paper.

II. Tensor skew-circulant matrices

The essential feature of Winograd-type algorithms is
that they efficiently compute the product of a tensor
skew-circulant matrix and a vector. A 4x4 skew-
circulant matrix is defined as a matrix of the form
ml m- m3 my

m, m; m, m

m, my m m,/|

mg, m; m; my
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An n X n skew-circulant matrix is of the form

a, a, a,_, a,
N = a‘z 0'3 < a." ‘?1
a, a a,_, a,_,

Thus, if X and Y are n-vectors and N is skew-
circulant, there is an efficient algorithm to perform
the linear computation: Y = NX.

But even more is true. For instance if M and N
are as above, then the 4n X 4n matrix writtenin n X n
block form as

m N
m, N

m,N
m;N
m;N m,N mN m,N
msN m N m,N myN

is called the tensor product of M and N and denoted
by M ® N. Similarly, we may form M@ N® S also.
If M, N and S are skew-circulant, we will call such
matrices tensor skew-circulant. The essential point is
that there exist efficient algorithms for evaluating
tensor skew-circulant matrices operating on vectors.

In this paper we will encounter only three types of
tensor skew-circulant matrices. We will now pause to
discuss these examples. Let B and C be 2x2 skew-
circulant matrices

b] b2> (Cl C:)
B = d =
(bz b, an < e oof

and let M be a 4 x4 skew-circulant matrix as above.
In this paper we will encounter B®C, B®M or
C®M, and B C® M.

We will write them out in detail so that when they
arise in the rest of the paper they can be readily
recognized. We have

myN
m,N

myN
m N

b,ce, byc, b,c,  bsos

b,C sz) b,c, b,c b,e; bse

B®C = _| D12 b 202 D2y
® (sz b,C bye, by, bie, bic,)

b,c,  bse by, b

which can be seen to consist of four 2x2 skew-
circulant blocks arranged in a skew-circulant pattern.
Similarly,

COM (clM 02M>
B oM oM

Gmy my cmy omy Cmy Cmy My Comy

om, ¢ymy cm, om, M, comy Com, c.m,

cmy cmy cymy ¢;ms comy com, Comy C,m,

om, cmy cm, ¢ m; oMy comy Cmy, Cmy

N CMy Camy ComMy Comy cmy cymy, cymy cymy

c,m, €My c,m, c,m, cymy, ¢my cym, ¢ m

comy cm, Cmy C,m, cmy cym, cym; cym,

Comy €My €My €y cm, cmy cym, cym,
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consists of four 4 x 4 skew-circulant blocks in a skew-
circulant pattern. B® M exhibits the same pattern.
Finally,

bCOM b,CROM
B®C®M=(b2C®M b1C®M)

betM  byeoM b,eyM byeo,M

bc;c M b,eyM b,e,M b,e )M

b,eyeM b,e;M bieyeM bie;M |

b,e;c M b,eyM be,M be'M

which is a skew-circulant pattern of four 8 X 8 blocks
each of which is a skew-circulant pattern of four 4 x4
blocks, each of which is the 4% 4 skew-circulant
matrix b,c;M.

We will now see how skew-circulant matrices can
be found in finite Fourier transform matrices. Con-
sider the finite Fourier transform matrix F(5) on five
points relative to the standard basis. Explicitly, if we
let w = e*™/* then

1 1 1 1 1
1 o o o o
F5)=|1 o’ o' o
1 @ o o o
1 0 & 0 o

This matrix has no apparent skew-circulant pattern,
but if we permute rows and columns, ie. reorder the
basis vectors, then we obtain a matrix which has a
large skew-circulant piece. To be precise, if we per-
mute the fourth and fifth columns and rows, we obtain
a matrix F,(5) given by

1 1 1 1 1
1 v o o o
F,5)=|1 & o' ¢ o
1 o o o o
1 o o o o

Now a skew-circulant matrix is evident as the lower
right-hand 4 x 4 submatrix.

II1. Finite Fourier transforms on S and 5 X 5 points

To simplify notation we will use Z, to denote the
integers modulo n, Z, X Z, to denote ordered pairs
(a, b) with a, be Z,, and Z,xZ,xZ, to denote
ordered triples (q, b, ¢) with a, b, ce Z,.

In this section we will consider Zs and Z5 x Zs. For
a,beZ;, we may form a+be Zsand axbe Z;. We
say that a € Zs is a unit provided there exists a b in
Zs such that axb=1 in Zs. The set of units in Z;
will be denoted by U(5). Clearly, 1€ U(5) and
because 2x3=1 (mod 5), 2,3€ U(5), and because
4x4=1(mod5), 4€ U(5). Thus U(5) consists of the
elements 1, 2, 3, 4 or all of the non-zero elements of
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Zs and one checks that U(5) forms an Abelian group
under multiplication. Furthermore, we have 1, 2, 2°=
4 (mod 5), 2°=3 (mod 5), 2°=1 (mod 5), and so the
element 2 multiplicatively generates U(5), and its
powers 1, 2, 2%, 2* form an ordering of U(5).

We define the action of the group U(5) on Zs as
follows: forue U(5) and ae Zs; defineu(a)=uxa=
ua (mod 5). Using this action we say that a, be Zs
are equivalent if there is a u € U(5) such that a = u(b)
and write [a] for the set of points equivalent to a in
Zs. Since u(0)=0 for all ue U(5), [0]=0. By the
discussion above [1]=1, 2, 4, 3, so that Zs is the
disjoint union of the sets [0] and [1], and hence the
two points 0 and 1 form an asymmetric unit for the
group U(5) acting on Zs.

Since we have an ordering on the group U(5), the
sets [a] in Zs are naturally ordered by U(5) by simply
applying the elements u € U(5) in order to the element
a€Zs. [a]=2%a), 2'(a), 2%(a), 2*(a) or a, 2a, 4a,
3a. (Not all of these elements need be distinct as in
the case of [0]=0, 0, 0, O or simply 0.) Since our
objective is to find a matrix form of the five-point
Fourier transform we need to extend this ordering to
the whole of Z. Since 0, 1 is an asymmetric unit for
U(5) acting on Zs, [0], [1] is a listing of all the
elements of Zs with each ordered by Z;. Thus we
obtain the ordered listing of Zs, 0, 1, 2x1, 2°x1,
2*x1o0r0,1,2,4,3.

This ordering of Zs provides a matrix form of the
finite Fourier transform. Again, letting w = 2™/*, we
have the result that the matrix entry of the a row and
b column is w“’. Thus in this ordering we have

0 1 2 22 2}

0 w0xo 0l %2 cuo><22 w0x23
1 wle wlxl wlxz wlle w|x23
F,(5)=2] 0¥ o' @¥? @¥% ¥?
22 wzlxo wzle wzzxz w2?x22 w22x23
23 w23x0 w23xl w23x2 w23x22 w23x23

and evaluating all the expressions modulo 5 we obtain

0 1 2 4 3
0/w® 0 0° 0® % 1 1 1 1 1
1] 0° o' 0 o o 1 0 o 0 o
F,(5)=2 0’ 0 0 W W=l 0 0 W w
4] 0° 0* 0 w' w? 1 o' @ 0 o
3\’ 0 o' 0 o 1 @ 0w o w

which has a 4x4 skew-circulant submatrix in the
lower right-hand corner.

Thus we see that by introducing the ordered multi-
plicative group U(5) and studying the equivalent
points and an asymmetric unit for the action of this
group on Zs, we can rewrite F(5) as a matrix with a
large skew-circulant block.
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It is easier to see the patterns in the various forms
of the finite Fourier transform matrix if in displaying
it we drop the root of unity  and simply show the
exponents. So we will write

00000
012 3 4
FG5)=l0 2 4 1 3
0 3 1 4 2
0 4 3 2 1
and our new form,
00 000
01 2 43
E,(5)=[0 2 4 3 1
04 3 1 2
0312 4

Let us now consider the two-dimensional finite
Fourier transform F(5,5) on Zsx Zs. If X(a, b), a,
be Zsx Zs is the input and Y(c, d), ¢, d € Zsx Zs is
the output then
Y(c,d)= Y

(a,b)e Zsx Zs

exp [(2mi/5)(ac+bd)] X (a, b).

To view this as a matrix operating on a 25-vector
requires that we choose a basis, i.e. order the elements
of Zsx Zs. We will now carry out the above construc-
tion in this two-dimensional case. First, we will intro-
duce an ordered multiplicative group M = U(5) act-
ing on Zs;x Zs, and then determine its equivalent
points and asymmetric unit. Finally, we will establish
an ordering on Zs;x Z; that yields skew-circulant
blocks in the matrix representing the Fourier trans-
form on Zsx Zs.
For ue U(5) and (qa, b) € Zs; x Z5 define

(6 2)
M= 0 u

u 0\/a ua 0
miao=(g 2)(3)=(5 )

where all arithmetic operations are performed
modulo 5. Since, for u,, u,e U(5)

o _(ul 0)(142 0)_(u|u2 0)_m
e 0 uJ\0 u) \ 0 U, il

the set M of m, of all ue U(5) is an ordered group
acting on Zsx Zs. In fact, it is just another way of
writing U(5) so that it acts in two dimensions.

We will now describe a construction that will help
us study the action of groups on sets and select
asymmetric units. This will produce a table of ele-
ments of the set organized in such a way that the
action of the group can easily be seen. Table 1 shows
the action of M on Zsx Zs.

and let

FINITE FOURIER TRANSFORMS THAT RESPECT GROUP SYMMETRIES

Table 1. The action of the group M on Zsx Z;

m, m, m, m,

)
=2

ES

ES

T
B
L
I
woos

(%)

SRS
SNSa—

Each row in the table contains the set of points
equivalent to the first element of that row, ordered
by the group M. That is, we obtain the row by letting
each element of M: m,, m>, m,, m; act on the first
point. For example, the row labelled by

Bl ()= »()-() »()-()
m(2)-()

The entire table is created by repeatedly selecting
elements not already included and forming the row
corresponding to their equivalent points, until every
point in Zsx Z; has been included. Finally note that
only the first occurrence of an element in a row is
listed. See, for example, the first row in Table 1.
Since every element in Z; X Z, appears in the table
and each row consists of all the elements equivalent
to the element in the first column, it follows that an
asymmetric unit may be constructed by choosing one
element from each row. By a slight abuse of notation

we Write
‘ a'
b

for the set of points equivalent under M to

(:)

Since M is an ordered group, each of the sets

H

is ordered as in the one-dimensional case and if

(5)o)



L. AUSLANDER, R. W. JOHNSON AND M. VULIS

we have

-G Go)- () G3)
bl \b)> \2b)" \4b)" \3p)
[t remains to construct an ordered asymmetric unit
to give an order to Zs;X Zs and then to show the

resulting Fourier transform matrix.
Before doing this, let us introduce the notation

C a
B”([d]; [b]):B"(C’d;“’b)

for the submatrix of the Fourier transform F,(5,5)
matrix that transforms the sample points correspond-
ing to the ordered set of equivalent points

H
]

We can calculate these blocks as follows: since the
equivalent sets are ordered by M=m,, my, m,, m,
we have, in general, for

() () o)

to those of

if =€ and = o,
7’] 7’2 7’4 7’3
2 4 3 1
B(cd;ab)=|", 7 " 7|
7t 9 9! g
7 0 gt g

which is indeed skew-circulant. This is perhaps

clearer if we write

1 2 43

A 2 4 3 1
;a,b)= .

B,,(C, da a, ) 4 3 1 2

31 2 4

The remaining cases are given by
A a 0
B,(0,0;a,b)=(0000), (b) # (0);

and

B,(c,d;0,0)=

(== e B e B Y
NN
U o
SN——
W
P
(==
~N—

and, finally,
B,(0,0,0,0) = (0).
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Thus no matter how we choose the asymmetric
unit, we will end up with a block skew-circulant
matrix. However, the space Z;x Z; itself is ordered
lexicographically not only in counting order but also
as we constructed in the beginning of this section
using M. Our choice of an asymmetric unit is fully
defined by taking in each set of equivalent points the
smallest as a representative, obtaining

o CHL} B G B

The full matrix of l:',, is shown in Fig. 1.

Thus we have verified that the ordered multiplica-
tive group M = U(5) acting on Zsx Z enables us to
order the elements of Z;x Z; so that when the finite
Fourier transform on Z;x Z; is written as a matrix
relative to this basis it breaks into blocks that are
skew-circulant.

IV. A toy example

We will now present a toy example to show that
Winograd-type algorithms offer the potential for com-
puting finite Fourier transforms that respect crystallo-
graphic symmetries. Consider the two-dimensional
space group p3 given in International Tables for Crys:
tallography (1983) with equivalent positions given by

XY, x—y, X+y, X

and sample with five points in each dimension. The
action of p3 on Zsx Zs is given in matrix form by

G0 2GR 9-6)
b/’\1 -1 b)’\-1 0/ \»b

where all arithmetic operations are taken modulo 5.
In particular, —1=4. We let

(3 0)

wa -

A mmaam e o o
NH WwaNr wWanes cooco
PR P 0

ANML NMweA MWan WanM 0000

e wewe weoo o2ZD 2822
VAN NEWA ANNG 0000 HWah ANNMWL O wen

©000 0000 ©0000 0000 0000 0000 ©] co
ANHW NMHWA HWAN WANM 0000 Wanr Ofmo
WANN ANNW MMWA MWAN 0000 Muwan Of no
HUAN WaNK ANMW NHWA 0000 NMWe O] ao
NHLA HUaAN WANM ANMW 0000 anmw o|wo
UANN WALM WANK WANKM Wank 000D Of om
HUaNn Muan Huan Mwan “wal 0000 o) on
NHwae NHUA NMWe UHWe Newe 0000 Of ca
ANML ANNL ANKMW ANMW ANMW 0000 Of Ow
NHWA 0ODO ANKMW HMWAN Walk walr O e
ANHUE 0000 WANM NMWA HWAN Hwan O un
WANN 0000 HWaN ANMW LHWe NHwWwe O aa
HWAN 0000 NHWA WANM ANMW ankw O] ww
HUAN NMWA 0000 ANMU Wank Huan ©f ue
NHEUA ANNW 0000 WaNK MWal MEWa O an
ANHUE WANM 0000 MWAN NHWA aNMW O] wa
WaANE HUAN 0000 NHWA ANMW waNe O lew
ANHG MWAN NHWA 000D WaNk NHWA Of am
HUAN ANNW WaNKM 0000 NHWe Wane Of ma
NHUA waNK HWaN 0000 anMw Huwan of ww
OO0 ANMU MWAN NHWA Wanm ANMW Of wum
OOOO0 WANK NMHWA ANMW MUan Wane O mn
©OOO0O0 HUAN ANKMW Wank MHWA Hwan Of ua
©OOOO NHUA WaANK MuaAN alNrMe Newe Of aw

Ao mmomon o~
WaANN WAk wa
LR <

. The Fourier transform matrix ﬁp(S, 5) produced by the
group M.

ol
0
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Table 2. The action of the group CM on Z;x Z;
m m, mg m,

LT T

N
=)
S——

\4 —
SO = & »n = o

[SENS)

[

o —

S
[

e~~~ — o~~~
[ERFN )

~
e, /—: A~ —

»

Then

-1 1 1 0
T’= d T-‘=( )=1.
(—1 o) an 0 1

Hence p3 may be considered as the group of matrices
I, T, T? operating on Zsx Zs.

In § 111 we introduced the multiplicative group M
acting on Zsx Zs. Let CM be the group generated
by all matrices in p3 and M. Because for all u e U(35),

Tm,=m,T,

we have that CM is an Abelian group of order 12.
Explicitly every element of CM can be uniquely
written as the product m,T’, where ue U(5) and
i=0,1,2. But the group CM acts on the set Zsx Zs
and so has equivalent points and asymmetric units.
Table 2 describes the action of CM on Zsx Zs. In
this table m,, u=1, 2,4, 3 acts horizontally and I, T,
T? acts vertically.

Notice that Table 2 implies that the set of points

(- (-G ) G- G)- () G- C)

is a p3-asymmetric unit that is carried onto itself by
the action of M. In Fig. 2, we show the full p3 unit
cell enclosing the space of sample points in ZsX Zs.
The points have been labeled in the order we have
developed and equivalent points have been given the
same label. Points in the p3-asymmetric unit we have
chosen are circled and the conventional asymmetric
unit is outlined in the lower left-hand corner.

Fig. 2 has no obvious geometric interpretation; the
order of the points has been chosen for arithmetic,
not geometric reasons. We remark that the choice of
the M-invariant p3-asymmetric unit on Zs X Zs gives

FINITE FOURIER TRANSFORMS THAT RESPECT GROUP SYMMETRIES

us yet another order of the space Zsx Z5 and hence
another form of the Fourier-transform matrix. We
keep our multiplicative order in the asymmetric unit,
but for the other points we use the p3 symmetry to
obtain their order. This gives us the following choice
of the representatives and order of equivalence sets:

o) CL B GFE B e [

The resulting Fourier transform matrix is shown
(in exponent form) in Fig. 3. It is formed from 4 x4
skew-circulant matrices since, as we showed in § 111,
the form of B(c d; a, b) does not depend on the
choice of representatives,

(5) e (2)

But now for the payofl for all our efforts: since the
input X(c, d) is p3 symmetric, we need only compute
the transform in the asymmetric unit. But by our
choice of ordering in the sample space, the transform
matrix reduces to a particularly nice form - blocks of
skew-circulant matrices. To see this in general, we

Fig. 2. The p3-asymmetric unit in Zsx Zs.

NHWA ODOO NMHWA NHWA HwWwaN Wank O

©000 0000 0000 0000 0OOO 0000 O oo
NHUA OCOO NHWA NHWA HWAN WANK OO
ANHL 0000 ANHW ANKW NeWae Hwanw O| N0
WANK OCOCOO WaANK WANNM amwrw Nmwa O] ao
HMWaNn 0000 HWaN HWaN WaNk an-w O|wo
NELae WANK WaNM MWah OOO0O0 Hwan O NM
ANML HWAN HWAN NHWa 0000 NHWA O an
WANK NHWA NMWA ANMW 0000 AaNMW O wa
HUAN ANHW ANMW WAk 0000 Wan. Of Hw
0000 NHWA ANKMW HWAN HWAN NHWA O as
0000 ANHW WaNK NHEWA NHWA AVNW O ww
0000 WaNK HWAN ANNW ANNNW Wan- O ww
0000 HWAN NHWA WaNK Wa- Hwan O NN
NHWA ANMWL ODOOC ANMW WANK NHWA O Aw
ANMW WANN OCOOO WANK HWAN ANMW O w.
WaANK MWAN OOOO0 HWAN NMWA WaNK O =N
HWAN NHMWA 0000 NMWA AMNW Hwan O e
WaKl WANK ANKW NHWA WANKM DOOO O O~
MWAN HMWAN WANK ANKW HWAN OOOO OfON
NeWA NHWA HWAN WANK N-WA 0000 O|Oa
ANMLW ANKW NHWA HWAN ANMW 0000 O|OW
HUAN WANK NMWA OCOO NWA NHWA Ofam
NeWA HWAN ANMW 0000 aNMW aNMw O wn
ANMW NMWA WANK OOOO WaNK WANK O Ha
WANK ANMW HWAN COOCO Hwan mwan ol vw

o o o e mom o o -

VAN WaNK ANKW NNWLA WaNe 0000

Fig. 3. The Fourier transform matrix I:',,(S,S) produced by the
group M and p3.
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choose the output at the set of M-equivalent points
[a,b],

Y(c,d)=B,(c,d;0,0)X(0,0)
+B,(c, d; a,b)X(a, b)
+B,(c,d;a’,b’)X(a’, b')
+B,(c,d;a", b")X(a", b"),

a’ a a” .f a
(b') T(b) and (b) ! (b)
But X(a, b)=X(a',b')= X (a", b") by p3 symmetry.
Thus the matrix of the Fourier transform can be
replaced by one in which the last four columns of
blocks have been added to the first two, in pairs. Since
the sum of skew-circulant blocks is again skew-
circulant we obtain a matrix of such blocks. This
reduces F,(5,5) to a 25x9 matrix. The matrix can
be further reduced by taking advantage of the p3
symmetry on output. A careful observation of the
matrix in Fig. 3 shows that the Fourier transform
maps the asymmetric unit of p3 to an asymmetric
unit up to permutation. That is, after adding the
columns as suggested, every output outside the asym-
metric unit is equal to an output in the asymmetric
unit. For example,

where

Y(1,0)=1+2(1+w+0*)+2(1 t 0’ + o)
+Quw+w’)+ (0 +20)+ Q2w+ 0?)
+ 20+ w*) = Y(0, 4).

It can be shown that this phenomenon occurs in
general. With the help of these observations we have
reduced, using p3 symmetry, a 25x 25 matrix to a
9%x9 matrix whose action on a vector can still be

@ & 6

(0,0) ( 1 3 3 L] 3 3 3 3 )
(0.1) 1 l4w+w' 14+wi+4w’ 14+w+twt 14w+’ w? 42w 202 +wt 2w +w® w427
(0,2) 1 14uw+ew? 14w+t 140?40 14wt 2w? 4wt 2w+ o w + 2w? w? 4 24
(0,4) 1 I4w+w® 14+03+0® 14w+uw' 1+w?+0? 2w + W w+2w? w? + 2w 2w + wt
(03] 1 14’+0® 14w+t 140?40 14wt W+ 22 P % LI L] 2w+ u?
(1,2) 1 w+2u? w? 4 2wt 2w 4wt 2 + w? l4w+uw' 140+’ 1+w+wt 1+wisw?
(24)] 1 Wrwt 2wt 2w +w? w427 140?46 1404wt 1407 +0? 14wdut
(¢.9) 1 27 +wt 2w+ w? w+22? w?+ 20 l+w+uw' 14w?+0® 1+w+u® 1402408
s\ 1 2w+ w? w+Ww? W+t 2t 140?40 1+wtwt 1+4u?+0? 1+u+u‘}
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efficiently computed. We show the resulting matrix
in Fig. 4.

This completes our study of small examples that
illustrate our construction. In the next sections we
turn our attention to the problem of structuring
Fourier transforms on 60 x 60 x 60 points that respect
P3 symmetry. We will work this out in §§ V and VI.
In § V we will study the Fourier transform on 60
points and introduce the multiplicative group U(60)
that we use instead of U(5). In § VI we will see how
our work on Zs x Zs generalizes to a non-toy example.

V. The finite Fourier transform on 60 points

Our first task is to introduce a multiplicative group
that plays the role of U(5) for the finite Fourier
transform on five points. Consider Z,, and all a € Z,
such that there exists a b with axb=1 in Z,. This
set, denoted U(60), is a group under multiplication
in Zg, and is called the group of units. It can be
shown that U(60) consists of those elements in Zj,
that are not divisible by 2, 3 or 5. Explicitly, U(60)
consists of

1,7,11,13,17,19, 23,29, 31, 37, 41, 43, 47, 49, 53, 59.

In analogy with U(5), this order is not the order
we need to structure the finite Fourier transform
matrix so as to maximize the number of tensor skew-
circulant matrices. In the case of U(60) we need three
elements, 31, 41, and 37 to play the role of the multi-
plicative generator 2 in ordering U(5). It is not
obvious, but can easily be checked with a small calcu-
lation that (when all arithmetic is done modulo 60):
(1) 317=1; (2) 41°=1; (3) 37, 37%=49, 37*=13, and
37*=1 are all distinct elements of Zqo;, and (4) every
element of U(60) can be written uniquely as
(31)°(41)?(37)” with 0<a, B=1 and 0= y=3. It

Fig. 4. The Fourier transform matrix F,(5,5) reduced to a p3-asymmetric unit.
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follows from (4) that U(60) is an Abelian group under
multiplication with three generators.

Just as is the case with U(5), we can use these
generators to order U(60) appropriately. Consider
the correspondence

(a, B, v)—(31)°(41)P(37)7 € U(60) = Zeo

with 0= ¢, B=<1, 0= y=3. The triples («, B, y) are
naturally ordered by the multi-radix counting order,
namely

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0),
(0,1, 1), (0, 1, 2), (0, 1, 3), (1,0, 0), (1, O, 1),
(1,0,2),(1,0,3),(1,1,0),(1,1,1), (1,1, 2),
(1,1, 3).
It is this order that we need in U(60); computing the
corresponding elements we have the order
1,37,49,13,41,17,29, 53, 31,7,19,43,11, 47, 59, 23.

We will now discuss equivalent points and asym-
metric units for U(60) acting on Z,, by multiplication
in Zg. In this case equivalent points may have 1, 2,
4, 8 or 16 elements, and different subgroups may be
said to act on equivalent points. Let us introduce
some notation for subgroups of U(60):

(0,0, 0)
{0, 1,0
(0,0, 1)
0,1, 1)
(1,0, 0
(1,1,0)
(1,0, 1)
(1,1, 1)

denotes the subgroup 1,

the subgroup 1, 41,

the subgroup 1, 37, 49, 13,

the subgroup 1, 37, 49, 13, 41, 17, 29, 53,
the subgroup 1, 31,

the subgroup 1, 41, 31, 11,

the subgroup 1, 37, 49, 13, 31, 7, 19, 43,
U(60).

Each point a€ Z, has one of these groups
associated with it, the group of the point a, denoted
by G(a), carrying it effectively onto each of its
equivalent points. For example, 0€ Z,, has no other
equivalent points and thus G(0) =0, 0, 0). Similarly,
the point 1 is equivalent to all of U(60) and thus
G(1)=(1, 1, 1). Anintermediate case is 25 € Zs which
is equivalent under multiplication by U(60) to 5, 55,
and 35. One verifies that G(25) =(1, 1, 0). We remark
that groups of equivalent points are the same, and
thus G(25) = G(5) = G(55) = G(35). The group of a
point orders its equivalent points by using the order
in U(60). For example, if we choose 25 as the rep-
resentative of the points 25, 5, 55, and 35, then we
can order these points as follows: since G(25)=
(1,1,0y=1, 41, 31, 11 [this is the order in U(60)],
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we have the result that 1x25=25, 41x25=5, 31X
25=155, 11x25=35 is the correct order in [25] =25,
5, 55, 35, the set of equivalent points of 25. This
method gives us a way to order Z and thus to
produce a finite Fourier matrix.

By constructing a table as in § III we choose an
asymmetric unit. It can be verified that 0, 1, 6, 10, 16,
21, 25, 30, 36, 40, 45, 46 is one. Now we order these
elements by using the order of their associated groups.

0, G(0)=(0,0,0)
30, G(30) =<0, 0,0)
40, G(40)=(0,1,0)
10, G(10)=(0, 1, 0)
36, G(36)=(0,0,1)

6, G(6)=(0,0,1)
16, G(16) =(0,1, 1)
46, G(46)=(0,1,1)
45, G(45)=(1,0,0)
25, G(25)=(1,1,0)
21, G(21)=(1,0,1)

1, G(1)={1,1,1).

Notice that we have now completely ordered Z¢,. In
fact we just list the classes of equivalent points:

Zbﬂz[o]s [30]v [40]’ []0]9 [36]a [6]? [16]’ [46]9
[45], [25], [21], [1].

Now, let B(b; a), as in the toy example, denote
the block in the Fourier transform matrix correspond-
ing to that part of the transform which takes the points
in [a] into those in [b]. We shall see that all B(b; a)
are tensor skew-circulant matrices or repetitions of
tensor skew-circulant matrices.

We note that if |G(a)| denotes the order of the
group G(a) then the number of points in [a]is |G(a)|
since G(a) acts effectively. Thus, B(b; a)isa|G(b)|x
|G(a)| rectangular matrix. Furthermore, it can be
verified that B(a; b) is the transpose of B(b; a).

In Fig. 5 we show the finite Fourier transform
matrix on 60 points for the ordering just described.
Actually, we show only the exponents of o = ™/,
the 60th roots of unity. More precisely, if F(60)=
(w?)0= i, j =59 describes the finite Fourier transform
matrix relative to the standard ordering then let
F(60) = (ij) be the matrix of exponents. Then if we
reorder the indices 0, ..., 59 into p(0),..., p(59) we
have F,(60)=(w""""") and F,(60)=(p(i)p(j))
where all arithmetic is done modulo 60. Thus Fig. 5
is the matrix F,(60), with p(*) the ordering induced
by the group U(60).
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And finally, on the diagonal, the set of points
equivalent to 1,

U(60)=[1]=1, 37, 49, 13, 31, 7, 19, 43, 41, 17, 29,
53, 11, 47, 59, 23

. 1 31 1 41
B,,(1;1)=(31 1)®<41 1)

1 37 49 13
37 49 13 1

® 49 13 1 37)
13 1 37 49

The off-diagonal blocks are also made up of repeti-
tions of tensor skew-circulant matrices. This repeti-
tion is the result of the fact that the groups of the
points are not the same and a precise prescription of
this phenomenon is beyond the scope of this paper.
Suffice it to say that the patterns discernible by the
eye in Fig. 5 are perfectly regular and can be coded
in a program to compute the Fourier transform
efficiently on 60 points.

V1. Symmetry on 60 x 60 X 60 points.

Until now everything in this paper has been construc-
tive and explicit. Since 60 x 60x 60 =216 000, to list
our constructions explicitly for a problem of this size
is impossible. Even though our methods will reduce
this problem by the threefold symmetry of P3, we
still must deal with approximately 216 000/3 =72 000
points. We will therefore adopt an existential dis-
cussion, pointing out that certain objects exist, and
continue to state their properties.

In the actual computer program for the calculation,
each of these objects has to be constructed by an
algorithm. Since this requires considerable technical
discussion, we have delayed it to a second paper.

Putting together the suggestive ideas of the preced-
ing sections, for the case of 60 points in three
dimensions, we must investigate the ordering induced
by U(60) on Zsx ZgyX Zsy, and the effect of the
symmetry group P3 on that ordering.

We let P3 be the three-dimensional space group
given in International Tables for Crystallography
(1983) with equivalent positions given by

X025 X—V, 2, V=X X 2

P3 can be written as the matrix group {1, T, T*} acting
on
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in ZgoX Zgo X Zgo, Where

0 -1 0
T=|1 -1 0}
0 01

Furthermore, we must extend U(60) to act in 3-
space; so for u€ U(60) we consider u acting as

The set m, such that u € U(60) = M is now an ordered
group as in § I11. Then Tm, = m,T for all ue U(60).
Let CM be the Abelian group m,, Tm,, T’m, of
3x 16 =48 elements. As a group acting in Zg, X Zgg X
Z¢,, CM has an asymmetric unit. This asymmetric
unit can be enlarged to a P3-asymmetric unit A which
is M invariant. The fact that A is M invariant means
that when we restrict the finite Fourier transform
matrix to A it will be made up of large tensor skew-
circulant blocks.

A can be chosen so that it is the disjoint union of
Apjand A, A= Ayv A,, where A are the fixed points
under P3 and A, are those points moved by P3.
Further, A, and A, are M invariant, i.e. M(A;) = A,
and M(A))=A,.

Now we can view M acting as a group on A, and
A, and as such it has asymmetric units in each space.
But this action has been described in § V; ie. each
asymmetric unit is described by a certain number of
points and their groups. Let us write Ay, s ,, for those
points whose groups are (a, 8, y) in an asymmetric
unit for M in Ay, and, similarly, A, (5., in A;. Now,
as we saw in § V, M orders Zg,. Using this order, we
canorder Zgy X Zgy X Zgo lexicographically. As subsets
of ZyoX Zgo X Zgo, Aotap.yy aNd A) (a5, are ordered.
And, as before, we order the subgroups (0,0, 0),
(0,1,0), (0,0,1),...,(1,1,1).

Since  ZgX ZgoX Zgo= Aov A, v T(A)) v T(A),
just as in § IV, the whole space is ordered if we agree
that Aj< A, <T(A,)<T?(A,). With this order we
have defined the finite Fourier transform matrix on
60 % 60 % 60 points. It is clear that it will restrict to a
transform of Ayv A, to Ayv A, that respects P3 sym-
metry and that the resulting blocks will be the sums
of three blocks corresponding to I, T, T>.

It remains only to sketch a proof that each of the
blocks is tensor skew-circulant or a repetition of
tensor skew-circulant matrices. As in § V, we shall
only discuss blocks near the diagonal, but as in the
case of F,(60), the other blocks, while more difficult
to discuss (we need to introduce a lot of new nota-
tion), are in fact easy to compute because of the
repetitions in their structure.



L. AUSLANDER, R. W. JOHNSON AND M. VULIS 477

Let us extend our notation for blocks: if

a x
b| and |y
c z

are equivalence classes in A, or A, under the action
of M, let B,(x, y, z; a, b, ¢) be the block in the finite
Fourier transform matrix F,(60Xx60Xx60) corre-
sponding to that part of the transform which carries
the set of points

a X
b| to
V4

Let ﬁp(x, ¥, z; a, b, ¢) be the corresponding block of
exponents.

Our condition that B,(x, y, z; a, b, c) be near the
diagonal is the requirement that the sample points
have the same group, G(aq, b, ¢) = G(x, y, z). Suppose
G(a,b,c)=1,g,,...,8,; then by our ordering we

have
[ a] a a a
bl=[b|g|b)-...8&| b}
[ ¢ ] c c c
and
[x] /x x x
YI=IY) 8| Y)--->8| V)
| z | z z z

With this notation we can explictly calculate the
blocks B,(x,y, z; a, b, ¢). We have

Now by our construction of the group (a, B, y)=
G(a, b, ¢) the resulting matrix is tensor skew cir-
culant. We shall be content to give three example
calculations. For (e, B, y)=(0,1,0)=1, 41 we have

1 41 1 41
G‘(41.41 1)"(41 1)’
(where all arithmetic is done modulo 60); for
(1,1,00=1,41,31, 11,

1 41 31 11
41 41.41 31.41 11.41
31 41.31 31.31 11.31
11 41.11 31.11 11.11
1 41 31 11
{41 1 11 o3 _(1 31 (1 41)
131 11 1 41 \31 1)®41 1)
11 31 41 1

And finally for (1, 1, 1) = U(60) it can be verified that
the matrix is given by

1 37 49 13

1 31 1 41 37 49 13 1
(31 1)®(41 1)® 49 13 1 37)

13 1 37 49

Let us summarize what we have achieved. For the
case of the three-dimensional finite Fourier transform
on 60 X 60 x 60 points subject to the threefold crystal
symmetry P3, we have introduced an order on the

a a a
b gl b gn b
c c C
y ax+by+cz giax+gby+gcz g.ax +g,by + gncz
V4
. 81X
B,(x,y,z;a,b,¢c) = | g1y agix+bgy+egiz giagix+g bgy+gicgiz ... g.agix+g.bgy+gacgz
812z
8nX
gny ag.x+bg,ytcg.z giag.x+g1bg.y+81c8.z ... £na8:X+ 8ubgny T 8aC8aZ,
8nZ
1 g ... g
=(ax+by+cz) & 818 £18n =(ax+by+cz)G.
gn glgn gngn
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points, using a multiplicative group M, that produces
a matrix of a particularly nice form. Further, it
restricts to an asymmetric unit for P3 on the space
reducing the size of the matrix by 1/9. Furthermore,
the resulting matrix has the same tensor skew-
circulant form as the big matrix and so can be used
to compute the transform using the same efficient
algorithms as the original transform.

As we have suggested earlier, the technical details
in the resulting algorithm will be the subject of
another paper where the construction of the asym-
metric unit and all the blocks will be shown.

Summary

The finite Fourier transform on N data points is
simply the evaluation of an N X N matrix times an
N-vector to produce an N-vector result. The straight-
forward method of matrix multiplication requires a
number of operations proportional to N> In terms
of computer programming, the time required to com-
pute the result, say Tg(N), would quadruple if the
input size were doubled. We can express this by
writing Ts(N) = CN? where C is a constant depend-
ing, amongst many things, primarily on the machine
on which the program is run and the coding of the
program. Typical values of C arein the range 0f 40 us
for the VAX-11/785 to 400 ns for the CRAY X-MP.
So even for moderate-size problems, say N =100 to
10 000, the range of observed times is significant;
measured in seconds to hours.

The remarkable aspect of the Fourier transform is
that there exist ‘fast’ or ‘efficient’ methods which do
the same evaluation in a time proportional to

Acta Cryst. (1988). Add, 478-481
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Nlog N, or Te(N)= KN log N where K is another
constant, approximately the same as C. This means
that using ‘fast’ methods reduces time costs for real
problems by several orders of magnitude.

For problems in crystallography, the finite Fourier
transform is run many times for the same space group
on the same number of points. This problem has led
to efforts to use the symmetry of the data to reduce
N by the order of the group to save time and space
in calculating the result. For groups built from P2
Ten Eyck (1973) was able to achieve both. Bantz &
Zwick (1974) were able to use symmetry to reduce
memory requirements for nearly all space groups.

The advantage of the approach presented in this
paper is that we can use symmetry to reduce the data
and still use an efficient N log N evaluation method.
Although much work needs to be done to develop
algorithms for all the space groups, the general
method presented here shows that such algorithms
exist. In principle, each group and each grid size leads
to a different program. However, the methods presen-
ted in this paper enable us to generate these programs
automatically. Moreover, by the very nature of the
algorithms developed they can be naturally parti-
tioned to calculate structures larger than available
high-speed memory.
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Abstract

A method is described of expanding a molecular
fragment for use in Patterson search procedures by
the rotation of part of a model about a bond direction
with respect to a fixed fragment, allowing the removal
of an important degree of freedom in the model. The
function has been incorporated into a computer pro-
gram and it has been found possible to orient very
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small partial fragments in this way. The consequent
expansion of a search model should assist in struc-
tural solution.

Introduction

The basis of Patterson search techniques lies in the
provision of a reasonable model fragment for com-
parison with the observed data. In the reciprocal-
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