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sponds to the introduction of a second parameter, 
both being correlated by a ratio of approximately 4: 1. 

Qualitatively, the narrow Gaussian models primary 
extinction and the four-times-wider Gaussian models 
secondary extinction. There is no physical reason for 
the constraint of the ratio of 4:1 for the half-widths 
of the two Gaussians as imposed by the assumption 
of a Lorentzian mosaic distribution. The model 
should become much more flexible if the ratio of the 
half-widths is a free parameter in some fixed limits. 
Additionally the relative normalization of the two 
Gaussians can be introduced as a free parameter 
under the natural constraint that the sum of the two 
must normalize to 1. 
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Abstract 

A general method for producing efficient algorithms 
to evaluate finite Fourier transforms that fully utilize 
symmetry to reduce both computing time and space 
requirements is described. The method is applicable 
to all space groups. The resulting algorithms retain 
the ' N  log N '  behavior of the fast Fourier transform 
while reducing the size of the data to approximately 
an asymmetric unit. The algorithm for the p3 and P3 
groups is shown. 

0108-7673/88/040467-12503.00 

I. Introduction 

The standard method for efficiently computing three- 
dimensional finite Fourier transforms is by Cooley- 
Tukey and Good-Thomas  algorithms. Ten Eyck 
(1973) in his pioneering work on crystallographic fast 
Fourier transforms showed how certain groups of 
crystallographic symmetries could be combined with 
such algorithms to reduce the computational burden. 
There are two main features of the Ten Eyck 
algorithms: (1) the groups of symmetries must carry 
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468 FINITE FOURIER TRANSFORMS THAT RESPECT GROUP SYMMETRIES 

the sample points onto themselves; and (2) when we 
reduce the finite Fourier transform to the asymmetric 
unit, they can still be evaluated by the above efficient 
algorithms. Ten Eyck pointed out that his methods 
will not work for general crystallographic groups. 

Basically the Cooley-Tukey and Good-Thomas 
algorithms use the additive properties of the integers. 
In recent years, starting with an idea of Rader (1968), 
Winograd (1978) has developed new algorithms for 
efficiently computing finite Fourier transforms based 
on the 'multiplicative' properties of the integers. In 
this paper we will show how multiplicative algorithms 
match with crystallographic symmetry groups to pro- 
duce efficient finite Fourier transforms when restric- 
ted to the asymmetric unit for P3. In subsequent 
papers we will show how these algorithms can be 
made to work for all crystallographic groups. 

Our approach is based on standard ideas used in 
the study of crystal symmetries: groups acting on 
spaces, equivalent points and asymmetric units. The 
essential new ingredient in our approach is to intro- 
duce what we call multiplicative groups M (these 
come from the multiplicative properties of the 
integers), an ordering of the elements of M, a group 
CM built from the group P3 and M, and tensor 
skew-circulant matrices. In an extremely abridged 
form our method consists of finding equivalent points 
and an asymmetric unit for the group CM acting on 
the sample points. This information, combining with 
the ordering on M, enables us to structure the finite 
Fourier transform restricted to the P3 asymmetric 
unit so that it breaks into blocks of tensor skew- 
circulant matrices which by Winograd theory can be 
computed efficiently. 

In this paper we will carry out this program in two 
stages. Stage 1 will treat the two-dimensional space 
group p3 acting on 5 x 5 points, which although a toy 
example does let us show in a simple setting many 
of our ideas. Stage 2 will consist of a treatment of 
P3 acting on 60 x 60 x 60 points. We have chosen a 
presentation of stage 2 that shows all of the ideas in 
our approach, but we have omitted many of the 
technical details that are necessary when one really 
writes computer code. The technical computer coding 
ideas will be presented in a subsequent paper. 

II. Tensor skew-circulant matrices 

The essential feature of Winograd-type algorithms is 
that they efficiently compute the product of a tensor 
skew-circulant matrix and a vector. A 4 x 4  skew- 
circulant matrix is defined as a matrix of the form 

M = 

(m~ m 2 m 3 ) m4 

m2 m3 m4 ml 

m 3 m 4 m~ m 2 " 

m4 ml  m2 m3 

An n x n skew-circulant matrix is of the form 

al  a2 • • • an-i  an \ 

) N = a2 a3 • • • an al 

! 
an al • • • an-2 a -1 

Thus, if X and Y are n-vectors and N is skew- 
circulant, there is an efficient algorithm to perform 
the linear computation: Y = NX. 

But even more is true. For instance if M and N 
are as above, then the 4n x 4n matrix written in n x n 
block form as 

m l N  m 2 N  m3 N m 4 N )  

m2N m3N m4N mlN 
m3N m4N m~N m2N 
m4N rn~N m2N m3N 

is called the tensor product of M and N and denoted 
by M ® N. Similarly, we may form M ® N ®  S also. 
If M, N and S are skew-circulant, we will call such 
matrices tensor skew-circulant. The essential point is 
that there exist efficient algorithms for evaluating 
tensor skew-circulant matrices operating on vectors. 

In this paper we will encounter only three types of 
tensor skew-circulant matrices. We will now pause to 
discuss these examples. Let B and C be 2 x 2 skew- 
circulant matrices ( ) ( c : )  bl b2 and C =  cl 

B =  b2 b~ c~ c ' 

and let M be a 4 x 4 skew-circulant matrix as above. 
In this paper we will encounter B®C, B®M or 
C®M, and B®C®M. 

We will write them out in detail so that when they 
arise in the rest of the paper they can be readily 
recognized. We have 

( blc~ blC2 b2cl b2c2\ 
b q: b,c  b,c, b,c, b,c,! 

\b2C biC/ b2c I b.c, blcl blc~]' 
b~_c2 b2c~ b~c~ b~c~/ 

which can be seen to consist of four 2 x 2  skew- 
circulant blocks arranged in a skew-circulant pattern. 
Similarly, 

C@M = (  ctM 
c2M 

C l m l  

e l m 2  

cl m3 

C 11Ti 4 

C2ml 

C 2 m 2 

C 2 trl 3 

C2 m 4  

Cl m2 Cl Fn3 £i m4 C2ml c2m2 c2m3 £2/714 

¢im3 clm4 ¢irnl c2m2 ¢2/713 c2tH4 ¢2D'II 

¢1m4 C l m l  clrr/2 c 2 m  3 ¢2m4 c 2 m  I c2ttl 2 

c~m~ c I m  2 c I m  3 c 2 m  4 c 2 m  I c 2 m  2 c2nq 3 

c2m2 c2m3 c2?'r/4 Cl/T/I c l m  2 c l m  3 e l m 4  

c2rl'l 3 c 2 m  4 c 2 m  I c i m  2 cln'l 3 c i m  4 c l m  1 

c2/T/4 C2}T/I C2/'/'12 CI/ 'F/3 C l m  4 C l m l  ¢1m2 

c 2 m  I c 2 m  2 c 2 m  3 c l m  4 c l m  I c ~ m  2 c ~ m  3 [ 
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consists of four 4 x 4 skew-circulant blocks in a skew- 
circulant pattern. B ® M  exhibits the same pattern. 
Finally,  

( b,C® M b2CQ M~ 
B ® C ® M = \ b 2 C ® M  b l C ® M ]  

b~c~M blc2M b2clM b2c2M 
blC2 M blclM b2c2M b2clM 

b2clM b2c2M blclM blC2 M 
b2c2M b2clM blc2M blclM 

which is a skew-circulant pattern of four 8 x 8 blocks 
each of which is a skew-circulant pattern of four 4 x 4 
blocks, each of which is the 4 x 4  skew-circulant 
matrix bicjM. 

We will now see how skew-circulant matrices can 
be found in finite Fourier transform matrices. Con- 
sider the finite Fourier transform matrix F(5) on five 
points relative to the standard basis. Explicitly, if we 
let £0 = e 2~i/5, then 

1 1 1 1 1 
1 £0 £02 £03 £04 

F ( 5 ) =  1 £02 £04 £0 £03. 
1 £03 £0 £04 
1 £04 £03 £02 

This matrix has no apparent skew-circulant pattern, 
but if we permute rows and columns, i.e. reorder the 
basis vectors, then we obtain a matrix which has a 
large skew-circulant piece. To be precise, if we per- 
mute the fourth and fifth columns and rows, we obtain 
a matrix Fp(5) given by 

1 1 

1 £0 

Fp(5)= 1 £02 

1 £04 

1 £03 

£02 £04 
4 £03 £0 

£03 £02 2] 
£0 £0 £04 

Now a skew-circulant matrix is evident as the lower 
right-hand 4 x 4 submatrix. 

III. Finite Fourier transforms on 5 and 5 × 5 points 

To simplify notation we will use Z, to denote the 
integers modulo n, Zn x Zn to denote ordered pairs 
(a ,b)  with a, beZ, , ,  and Z,  x Z n x Z ,  to denote 
ordered triples (a, b, c) with a, b, c ~ Z,. 

In this section we will consider Z5 and Z5 x Zs. For 
a, b~Zs, we may form a+b~Z5 and a × b~Zs. We 
say that a ~ Z5 is a unit provided there exists a b in 
Z5 such that a × b = 1 in Zs. The set of units in Z5 
will be denoted by U(5). Clearly, 1~ U(5) and 
because 2 x 3 = 1 (mod 5), 2, 3 ~ U(5), and because 
4 x 4  = 1 (mod 5), 4~ U(5). Thus U(5) consists of the 
elements 1, 2, 3, 4 or all of the non-zero elements of 

0 

1 

F~(5)=2 
22 

23 

and evaluating all 

0 1 

Z5 and one checks that U(5) forms an Abelian group 
under multiplication. Furthermore, we have 1, 2, 2 2 = 

4 (mod 5), 2 3 - 3  (mod 5), 2 4 - -  1 (mod 5), and so the 
element 2 multiplicatively generates U(5), and its 
powers 1, 2, 22, 2 3 form an ordering of U(5). 

We define the action of the group U(5) on Z5 as 
follows: for u ~ U(5) and a ~ Z5 define u(a) = u x a = 
ua (mod 5). Using this action we say that a, b ~ Z5 
are equivalent if there is a u ~ U(5) such that a = u(b) 
and write fa]  for the set of points equivalent to a in 
Zs. Since u (0 )=  0 for all u ~ U(5), [0] = 0. By the 
discussion above [1] = 1, 2, 4, 3, so that Z5 is the 
disjoint union of the sets [0] and [1], and hence the 
two points 0 and 1 form an asymmetric unit for the 
group U(5) acting on Zs. 

Since we have an ordering on the group U(5), the 
sets [a] in Z5 are naturally ordered by U(5) by simply 
applying the elements u ~ U(5) in order to the element 
a~Zs. [ a ] = 2 ° ( a ) ,  21(a), 22(a), 23(a) or a, 2a, 4a, 
3a. (Not all of these elements need be distinct as in 
the case of [0] =0,  0, 0, 0 or simply 0.) Since our 
objective is to find a matrix form of the five-point 
Fourier transform we need to extend this ordering to 
the whole of Zs. Since 0, 1 is an asymmetric unit for 
U(5) acting on Zs, [0], [1] is a listing of all the 
elements of Z5 with each ordered by Zs. Thus we 
obtain the ordered listing of Zs, 0, 1, 2 x 1, 22x 1. 
23x l  o r0 ,  1 , 2 , 4 , 3 .  

This ordering of Z5 provides a matrix form of the 
finite Fourier transform. Again, letting £0 -- e 2~i/5, we 
have the result that the matrix entry of the a row and 
b column is £0,,b. Thus in this ordering we have 

0 1 2 22 2 3 

£00x0 £00xl £00x2 £00x22 £00x23 / 
£01x0 £01xl £01x2 £01x22 £0 1x23 / 
£02x0 £02xl £02x2 £02x22 £02x23 / 
0.)22x0 0)22xl 0)22x2 £022x22 (.022X23] 
£0 23x0 £0 23X1 0)23X2 £023x22 £023x23/ 

0/£00 £00 
1/£0o £01 

21£0o £02 
4~£00 £04 
3 \ to o £03 

the expressions modulo 5 we obtain 

2 4 3 

1 1 / 
092 094 £03 / /1  £0 £02 £04 
£04 £03 £04 £03 

£03 £0' £02] ~1 £04 £03 £0 1 
031 £02 £04/ \1  £03 £0 £02 £0 

which has a 4 × 4  skew-circulant submatrix in the 
lower right-hand corner. 

Thus we see that by introducing the ordered multi- 
plicative group U(5) and studying the equivalent 
points and an asymmetric unit for the action of this 
group on Zs, we can rewrite F(5) as a matrix with a 
large skew-circulant block. 
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It is easier to see the patterns in the various forms 
of the finite Fourier transform matrix if in displaying 
it we drop the root of unity to and simply show the 
exponents. So we will write 

0 0 0 0 0 

00 1 2 3 ~ 
F ( 5 ) =  2 4 1 

0 3 1 4 
4 3 2 

and our new form, 

A 
F , ( 5 )  = 

r0 0 0 0 0 

0 1 2 4 3 

0 2 4 3 1 . 

0 4 3 1 2 

4 0 3 1 2 

Let us now consider the two-dimensional finite 
Fourier transform F(5,  5) on Zs × Z5. If X(a,  b), a, 
b • Z5 x Z5 is the input and Y(c, d), c, d • Z5 x Z5 is 
the output then 

Y(c, d) = Z exp[(2"n'i /5)(ac+bd)]X(a,b).  
( a , b ) e Z s x Z  5 

To view this as a matrix operating on a 25-vector 
requires that we choose a basis, i.e. order the elements 
of 25 x 25. We will now carry out the above construc- 
tion in this two-dimensional case. First, we will intro- 
duce an ordered multiplicative group M = U(5) act- 
ing on Z s x  Zs, and then determine its equivalent 
points and asymmetric unit. Finally, we will establish 
an ordering on ZsxZ5  that yields skew-circulant 
blocks in the matrix representing the Fourier trans- 
form on Z s x Z s .  

For u • U(5) and (a, b) • Z5 x Z5 define 

and let 

m (0 0) 
(0 0) mu(a, b)= = 0 ub 

where all arithmetic operations are performed 
modulo 5. Since, for Ul, u2 • U(5) 

(o 0) 0) 
m u  I m u  2 ~ - -  ~ m u l  u 2 , 

U 1 0 U 2 U l U  2 

the set M of mu of all u • U(5) is an ordered group 
acting on Z5 x Zs. In fact, it is just another way of 
writing U(5) so that it acts in two dimensions. 

We will now describe a construction that will help 
us study the action of groups on sets and select 
asymmetric units. This will produce a table of ele- 
ments of the set organized in such a way that the 
action of the group can easily be seen. Table 1 shows 
the action of M on Z5 x Zs. 

Table 1. The action of  the group M on Z5 x Z5 

m I m 2 m 4 m 3 

[ : ]  (:) (:) (:) (:) 
[ : ]  (:) (:) (:) (~0) 
[ : ] :  (:) (:) (:) (:) 
[;]= (;) (:) (:) (:) 
[ : ] :  (:) (:) (:) C) 
[ i ] :  (;) (:) (:) (:) 

Each row in the table contains the set of points 
equivalent to the first element of that row, ordered 
by the group M. That is, we obtain the row by letting 
each element of M: m~, m2, rn4, m3 act on the first 
point. For example, the row labelled by 

The entire table is created by repeatedly selecting 
elements not already included and forming the row 
corresponding to their equivalent points, until every 
point in Z5 x Z, has been included. Finally note that 
only the first occurrence of an element in a row is 
listed. See, for example, the first row in Table 1. 

Since every element in Zs x Zs appears in the table 
and each row consists of all the elements equivalent 
to the element in the first column, it follows that an 
asymmetric unit may be constructed by choosing one 
element from each row. By a slight abuse of notation 
we write 

for the set of points equivalent under M to 

(:) 
Since M is an ordered group, each of the sets 

[:] 
is ordered as in the one-dimensional case and if 
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we have 

[:] :(:), (::), 
It remains to construct an ordered asymmetric unit 
to give an order to Z~xZ5 and then to show the 
resulting Fourier transform matrix. 

Before doing this, let us introduce the notatioh 

for the submatrix of the'Fourier transform Fp(5, 5) 
matrix that transforms the sample points correspond- 
ing to the ordered set of equivalent points 

[:] 
to those of 

471 

Thus no matter how we choose the asymmetric 
unit, we will end up with a block skew-circulant 
matrix. However, the space 15 x 15 itself is ordered 
lexicographically not only in counting order but also 
as we constructed in the beginning of this section 
using M. Our choice of an asymmetric unit is fully 
defined by taking in each set of equivalent points the 
smallest as a representative, obtaining 

The full matrix of/6p is shown in Fig. 1. 
Thus we have verified that the ordered multiplica- 

tive group M ~ U(5) acting on Z5 × Z5 enables us to 
order the elements of Z~ × Z5 so that when the finite 
Fourier transform on Z5 × Z5 is written as a matrix 
relative to this basis it breaks into blocks that are 
skew-circulant. 

I:l 
We can calculate these blocks as follows: since the 

equivalent sets are ordered by M = m ) ,  m~,  m4,  m 3 
we have, in general, for 

( b )  a n d ( d ) b o t h  not (~ )  

if o~ = e ~'~/~ a n d  rl = w a'+bd, 

r~ ~ rl 4 rl 3 r~: 

Bp(c,  d ;  a, b ) =  77 4 r~ ~ 77 ~ ~ , 

1"/3 ~ ]  T] 2 "174/ 
which is indeed skew-circulant. This is perhaps 
clearer if we write 

(i 424i) 3 J~,(c, d; a, b ) =  
3 1 " 

1 2 

The remaining cases are given by 

(:) (°o) B p ( O , O ; a , b ) = ( O 0 0 0 ) ,  ~ ; 

and 

(i) t:/ a; o, o) = o ,  

and, finally, 

%(0,0;0,0)=(0). 

IV. A toy example 

We will now present a toy example to show that 
Winograd-type algorithms offer the potential for com- 
puting finite Fourier transforms that respect crystallo- 
graphic symmetries. Consider the two-dimensional 
space group p3 given in I n t e r n a t i o n a l  Tab les  f o r  Crys .  
t a l lography  (1983) with equivalent positions given by 

x, y; )7, x - y ;  $ +y, 

and sample with five points in each dimension. The 
action of p3 on Z5 x Z5 is given in matrix form by 

_-:) . (:); (-i 
where all arithmetic operations are taken modulo 5. 
In particular, - 1 = 4. We let 

(0 ,0 )  

(0,11 
10,21 
(0 ,4 )  
(0,33 

11,01 
(2 ,0 )  
(4 ,0 )  
(3 ,0 )  

(1,11 
(2 ,2 )  
(4 ,4 )  
(3 ,3 )  

(1,21 
(2 ,4 )  
14,31 
(3 ,1 )  

(1 ,4 )  
(2,31 
(4,11 
(3.21 

(2.31 
(2,11 
(4 ,2 )  
( 3 , 4 )  

0 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

0 4 3 1 2  0 0 0 0  4 3 1 2  3 2 2 4  1 2 4  2 4 3 1  
0 3 1 2 4  0 0 0 0  3 1 2 4  2 2 4 3  2 4 3 1  4 3 1 2  

0 0 0 0 0  1 ' 2 4 3  

0 0 0 0 0  4 3 1 2  4 3 1 2  4 3 1 2  4 3 1 2  4 3 1 2  
0 0 0 0 0  3 1 2 4  3 1 2 4  3 1 2 4  3 1 2 4  3 1 2 4  

0 4 3 1 2  4 3 1 2  3 1 2 4  2 4 3 1  @ 0 0 0  1 2 4 3  
0 3 1 2 4  3 1 2 4  1 2 4 3  4 3 1 2  O 0 0 O  2 4 3 1  

0 1 2 4  4 3 1 2  2 4 3 1  0 0 0 0  1 2 4 3  3 1 2 4  
0 1 2 4 3  3 1 2 4  4 3 1 2  0 0 0 0  2 4 3 1  1 2 4 3  

0 1 2 4 3  4 3 1 2  0 0 0 0  1 2 4 3  3 1 2 4  2 4 3 1  
0 2 4 3 1  3 1 2 4  0 0 0 0  2 4 3 1  1 2 4 3  4 3 1 2  

0 3 1 2 4  1 2 4 3  4 3 1 2  2 4 3 1  3 1 2 4  0 0 0 0  
0 1 2 4 3  2 4 3 1  3 1 2 4  4 3 1 2  1 2 4 3  0 0 0 0  

Fig. 1. The Fourier transform matrix /~p(5, 5) produced by the 
group M. 
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Table 2. The action o f  the group C M  on Z~ x Z.~ 

m. rn, m~ m 3 

, ~  (00) 

, (:) (:) (:) (:) 
(:) (~) (:) (~) 

~ (:) (~) (:) (~0) 

, (;) (~) (:) (:) 

(~4) (:) (~) (:) 
~: (:) (~) (:) (~2) 

Then 

T 2 = ( : l  1 1 0 ) a n d  T3=(10 01)=I. 

Hence p3 may be considered as the group of matrices 
I, 7", T 2 operating on Z.~ x Z.~. 

In § III we introduced the multiplicative group M 
acting on Z_s x Z_s. Let C M  be the group generated 
by all matrices in p3 and M. Because for all u ~ U(5), 

Tm,, = m ,  7", 

we have that C M  is an Abelian group of order 12. 
Explicitly every element of C M  can be uniquely 
written as the product rn,,T ~, where u z U(5)  and 
i = 0, 1, 2. But the group C M  acts on the set Z5 x Z5 
and so has equivalent points and asymmetric units. 
Table 2 describes the action of C M  on Z5 x Zs. In 
this table m,,, u = 1, 2, 4, 3 acts horizontally and I, T, 
T 2 acts vertically. 

Notice that Table 2 implies that the set of points 

is a p3-asymmetric unit that is carried onto itself by 
the action of M. In Fig. 2, we show the full p3 unit 
cell enclosing the space of sample points in Z~ × Z~. 
The points have been labeled in the order we have 
developed and equivalent points have been given the 
same label. Points in the p3-asymmetric unit we have 
chosen are circled and the conventional asymmetric 
unit is outlined in the lower left-hand corner. 

Fig. 2 has no obvious geometric interpretation; the 
order of the points has been chosen for arithmetic, 
not geometric reasons. We remark that the choice of 
the M-invariant p3-asymmetric unit on Zs x Z~ gives 

us yet another order of the space Z s × Z.~ and hence 
another form of the Fourier-transform matrix. We 
keep our multiplicative order in the asymmetric unit, 
but for the other points we use the p3 symmetry to 
obtain their order. This gives us the following choice 
of the representatives and order of equivalence sets: 

[001 , [011 , [12] , [~ ] ,  [34] , [101 and [14]. 

The resulting Fourier transform matrix is shown 
(in exponent form) in Fig. 3. It is formed from 4 × 4 
skew-circulant matrices since, as we showed in §III ,  
the form of B(c, d; a, b) does not depend on the 
choice of representatives, 

(:) and (d)" 
But now for the payoff for all our efforts: since the 

input X ( c ,  d)  is p3 symmetric, we need only compute 
the transform in the asymmetric unit. But by our 
choice of ordering in the sample space, the transform 
matrix reduces to a particularly nice form - blocks of 
skew-circulant matrices. To see this in general, we 

l 
Fig. 2. The p3-asymmetric unit in Z~ x Z~. 

: o o o o  ;,21,3 , ' l l ]  ,'I~'I o'02"o ~]1]  
(0 ,0)  

(0 ,1)  
(0 ,2)  
(0 ,4)  
10,3) 

11,2) 
(2 ,4)  
(4 ,3 )  
13,1) 

(4,41 
13,3) 
(1 ,1 }  
(2 ,2)  

13,4) 
(1 ,3)  
12,1) 
(~ ,2)  

11,0) 
(2 ,0 )  
( 4 , 0 )  
13,0) 

11,4) 
(2 ,3)  
14,1) 
(3 ,2)  

Fig. 3. 

0 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0  

The Fourier transform matrix ]6p(5, 5) produced by the 
group M and p3. 
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choose the output at the set of M-equivalent points 
[a,b], 

where 

Y(c, d ) =  Bp(c, d; O, 0)X(0, 0) 

+ Bp(c, d; a, b)X(a, b) 

+ Bp(c, d; a', b')X(a', b') 

+ Bp(c, d; a", b")X(a", b"), 

a"~ 
( ~ i ) = T ( b )  and ( b , , / = T 2 ( b ) .  

But X(a, b) = X(a',  b') = X(a", b") by p3 symmetry. 
Thus the matrix of the Fourier transform can be 
replaced by one in which the last four columns of 
blocks have been added to the first two, in pairs. Since 
the sum of skew-circulant blocks is again skew- 
circulant we obtain a matrix of such blocks. This 
reduces Fp(5, 5) to a 25 ×9 matrix. The matrix can 
be further reduced by taking advantage of the p3 
symmetry on output. A careful observation of the 
matrix in Fig. 3 shows that the Fourier transform 
maps the asymmetric unit of p3 to an asymmetric 
unit up to permutation. That is, after adding the 
columns as suggested, every output outside the asym- 
metric unit is equal to an output in the asymmetric 
unit. For example, 

Y(1, O) = 1 +2(1 +to + o94) + 2(1 +092+ o93) 

+ (2o9 + o93) + (to + 2o9 2) + (2to 2 + 0 . ) 4 )  

+ ( 2 0 . ) 3 + 0 9 4 )  = Y ( 0 ,  4). 

It can be shown that this phenomenon occurs in 
general. With the help of these observations we have 
reduced, using p3 symmetry, a 25 x 25 matrix to a 
9 × 9  matrix whose action on a vector can still be 

efficiently computed. We show the resulting matrix 
in Fig. 4. 

This completes our study of small examples that 
illustrate our construction. In the next sections we 
turn our attention to the problem of structuring 
Fourier transforms on 60 x 60 x 60 points that respect 
P3 symmetry. We will work this out in §§ V and VI. 
In § V we will study the Fourier transform on 60 
points and introduce the multiplicative group U(60) 
that we use instead of U(5). In § VI we will see how 
our work on Z5 x Z5 generalizes to a non-toy example. 

V. The finite Fourier transform on 60 points 

Our first task is to introduce a multiplicative group 
that plays the role of U(5) for the finite Fourier 
transform on five points. Consider Z6o and all a ~ Z6o 
such that there exists a b with a x b = 1 in Z6o. This 
set, denoted U(60), is a group under multiplication 
in Z6o and is called the group of units. It can be 
shown that U(60) consists of those elements in Z6o 
that are not divisible by 2, 3 or 5. Explicitly, U(60) 
consists of 

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59. 

In analogy with U(5), this order is not the order 
we need to structure the finite Fourier transform 
matrix so as to maximize the number of tensor skew- 
circulant matrices. In the case of U(60) we need three 
elements, 31, 41, and 37 to play the role of the multi- 
plicative generator 2 in ordering U(5). It is not 
obvious, but can easily be checked with a small calcu- 
lation that (when all arithmetic is done modulo 60): 
(1) 312= 1; (2) 412= 1; (3) 37, 372=49, 373= 13, and 
374= 1 are all distinct elements of Z6o; and (4) every 
element of U(60) can be written uniquely as 
(31)'~(41)e(37) "~ with 0-<a,  /3<-1 and 0<_y_<3. It 

(0, O) 

(o, ~.) 

(o,'~) 

(o,4) 

(o, ~) 

(1, 2) 

(~,~) 

(~,s) 

(~, ~) 

(:) (:) (:) (:) (:) (:) (:) (') (:) 
1 $ $ $ $ 3 3 $ 3 

1 l + ~ + t o  ~ 1 + ~ = + ~  s l + w + ~  e 1 + ~ = + ~  s w:+~a,~ ~ 2~s- j .w4  2 ~ + ~ s  ~ + 2 t a ~  

1 1 "J- ~a:l "1- ~ s 1"1- ~ + ~ 't I -I- ~2 -t- t~ s l . + w - 4 - ~  4 2~1 ,.j- ~ 4 2~  ,.j- ~,s ~-j-  2w2 ~"  .t. k 4  

1 w + 2 w :  r,,= + 2~ 4 2cas -1- ca ¢ 2at +ca s 

1 2~ s + ca 4 2~ + ca" ~ .4- 2w: c~: + 2~ 4 

l + w + w  ~t l + w ~ l + ~ s  l + w + ~  4 l + w ~ + ~ s  

1.4-~2 + t~ l 1 + td.4. w I l + w ~ l  + ~  s l + w + w  4 

1 + ~ + ~  4 1 + ~ 2 + ~  $ l + w + ~  4 l + ~ + c a  s 

l + ~ 2 + t o  s 1 + ~ + ~  4 1 + ~ + ~  s l + c a + ~ 4  

Fig. 4. The Fourier transform matrix Fp(5, 5) reduced to a p3-asymmetric unit. 
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follows from (4) that U(60) is an Abelian group under 
multiplication with three generators. 

Just as is the case with U(5), we can use these 
generators to order U(60) appropriately. Consider 
the correspondence 

(a,/3, y)~--~ (31)'~(41)~(37) * 6 U(60) c Z6o 

with 0-<a, /3-<1, 0-< y-<3. The triples (a,/3, y) are 
naturally ordered by the multi-radix counting order, 
namely 

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), 

(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, 0), (1, 0, 1), 

(1, 0, 2), (1, 0, 3), (1, 1, 0), (1, 1, 1), (1, 1, 2), 

(1 ,1 ,3) .  

It is this order that we need in U(60); computing the 
corresponding elements we have the order 

1, 37, 49, 13, 41, 17, 29, 53, 31, 7, 19, 43, 11, 47, 59, 23. 

We will now discuss equivalent points and asym- 
metric units for U(60) acting on Z6o by multiplication 
in Z6o. In this case equivalent points may have 1, 2, 
4, 8 or 16 elements, and different subgroups may be 
said to act on equivalent points. Let us introduce 
some notation for subgroups of U(60): 

(o,o,o) 

(o, 1, o) 

(o,o, 1) 

(o, 1,1) 

(1,o,o) 

(1, 1,o) 

(1,0,1) 

(1, 1, l) 

denotes the subgroup 1, 

the subgroup 1, 41, 

the subgroup 1, 37, 49, 13, 

the subgroup 1, 37, 49, 13, 41, 17, 29, 53, 

the subgroup 1, 31, 

the subgroup 1, 41, 31, 11, 

the subgroup 1, 37, 49, 13, 31, 7, 19, 43, 

U(60). 

Each point a~Z60 has one of these groups 
associated with it, the group of the point a, denoted 
by G(a) ,  carrying it effectively onto each of its 
equivalent points. For example, 0 6 Z60 has no other 
equivalent points and thus (3(0) - (0, 0, 0). Similarly, 
the point 1 is equivalent to all of U(60) and thus 
G(1) = (1, l, 1). An intermediate case is 25 ~ Z6o which 
is equivalent under multiplication by U(60) to 5, 55, 
and 35. One verifies that G(25) = (1, 1, 0). We remark 
that groups of equivalent points are the same, and 
thus G(25) = G(5) = G(55) = G(35). The group of a 
point orders its equivalent points by using the order 
in U(60). For example, if we choose 25 as the rep- 
resentative of the points 25, 5, 55, and 35, then we 
can order these points as follows: since G(25)= 
(1, 1, 0) = 1, 41, 31, l l  [this is the order in U(60)], 

we have the result that 1 x25 =25, 41x25 = 5, 31 x 
25 = 55, 11 x 25 = 35 is the correct order in [25] = 25, 
5, 55, 35, the set of equivalent points of 25. This 
method gives us a way to order Z6o and thus to 
produce a finite Fourier matrix. 

By constructing a table as in § III we choose an 
asymmetric unit. It can be verified that 0, 1, 6, 10, 16, 
21, 25, 30, 36, 40, 45, 46 is one. Now we order these 
elements by using the order of their associated groups. 

o, G(o)=  (0, o, o) 

30, G(30) = (0, 0, 0) 

40, G(40)= (0, 1, 0) 

10, G(IO) = (0, 1, 0) 

36, G(36)= (0, 0, 1) 

6, G(6)=(0 ,  0, 1) 

16, G(16)= (0, 1, 1) 

46, G(46)= (0, 1, 1) 

45, G(45)= (1,0, 0) 

25, G(25) = (1, 1,0) 

21, G(21)=(1 ,0 ,  1) 

1, G(1)=(1 ,1 ,1) .  

Notice that we have now completely ordered Z6o. In 
fact we just list the classes of equivalent points: 

Z6o= [0], [30], [40], [10], [36], [6], [16], [46], 

[45], [25], [21], [1]. 

Now, let B(b; a), as in the toy example, denote 
the block in the Fourier transform matrix correspond- 
ing to that part of the transform which takes the points 
in [a] into those in [b]. We shall see that all B(b; a) 
are tensor skew-circulant matrices or repetitions of 
tensor skew-circulant matrices. 

We note that if IG(a) I denotes the order of the 
group G(a) then the number of points in [a] is [G(a) I 
since G(a) acts effectively. Thus, B(b; a) is a IG(b)l × 
IG(a)[ rectangular matrix. Furthermore, it can be 
verified that B(a; b) is the transpose of B(b; a). 

In Fig. 5 we show the finite Fourier transform 
matrix on 60 points for the ordering just described. 
Actually, we show only the exponents of to = e 2~i/6°, 
the 60th roots of unity. More precisely, if F(60)= 
(to°)O <- i,j <- 59 describes the finite Fourier transform 
matrix relative to the standard ordering then let 
fi'(60) = (ij) be the matrix of exponents. Then if we 
reorder the indices 0 , . . . ,  59 into p~(0),.. . ,  p(59) we 
have Fp(60)=(to p''~p~j~) and Fp(60)=(p(i)p(j)) 
where all arithmetic is done modulo 60. Thus Fig. 5 
is the matrix /6p(60), with p(*) the ordering induced 
by the group U(60). 



L. A U S L A N D E R ,  R. W. J O H N S O N  A N D  M. V U L I S  475 

We shall  be conten t  in this d iscuss ion to state that  
~6p(60) has the des i red  p roper ty  tha t  it consists  of  
blocks B~(a; b) that  are t ensor  skew-ci rculant ,  and  
to discuss several  examples .  First not ice that  Fig. 5 
has been labeled in the first row and  co lumn by the 
e lements  in their  new order .  Thus  the e lement  in the 
u p p e r  l e f t -hand  corner  is 0 x 0 = 0, the lower  le f t -hand 
corner  is 23 × 0 = 0, the u p p e r  right 0 x 23 = 0 and  the 
lower  r ight 23 x 23 = 49. 

Fu r the rmore ,  the sets of  equiva len t  points  have  
been s epa ra t ed  by add i t iona l  space  so that  it is eas ier  
to see that ,  for  example ,  the e lement  25 is a m e m b e r  
o f  the a symmet r i c  unit  and  its equ iva lence  set [25] - -  
25, 5, 55, 35. I f  we look in the co lumn labeled 25 and  
the row labeled 25 we see the block 

25 35 55 J ,,(25.25) 
' = | 5 5  35 25 5 

35 55 5 25 

It is c lear  that  this is t ensor  skew-c i rcu lan t ;  in fact,  

we have  

B , ( 2 5 ; 2 5 ) =  55 25 ® 25 " 

A n o t h e r  case on the d iagona l  is the block /?p(21; 21) 
for the set of  equiva len t  points  [21] = 2 5 ,  57, 9, 33, 
51, 27, 39, 3. We have  

/ ~ !  57 9 33 

9 33 21 

33 21 57 

B p ( 2 1 ; 2 1 ) =  51 27 39 3 

27 39 3 51 

3 51 27  

51 27 39 

/~p(21 ;21)=  51 21 

\ 3 3  

X 
51 27 39 3' 

27 39 3 51 

39 3 51 27 

3 51 27 39 

21 57 9 33 

57 9 33 21 

9 33 21 57 
l 

33 21 57 9/ 
/ 

57 9 3 1 /  
9 33 21 

33 21 5 " 

21 57 
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3555 2 1 3 7 9 3 3 5 1 2 7 3 9 3 4 1 1 7 1 ~  1 ~ 4 3 3 1  59 23 11 47 
45 15 5 25 53 37 49 114752, 3 1 7 1 9 4 3  
4 5 1 5 5  ~ 3555 ~ ~ 3 3 2 1 2 7 3 9 3 5 1 1 7 2 9 5 3 4 1  ~ 4 9 1 3 1 4 7 5 9 2 3 1 1  , ] 9 4 3 3 1  
4515 .., '~ 3555 ~, .,., 215739 . 5 1 2 9 2 9 5 3 4 1 1 7  13 1 3 7 5 9 2 3 1 1 4 7 1 9 4 3 3 1  I 

4 5 1 5 5 2 5 3 5 5 5 3 3 2 1 5 7 9 3 5 1 2 7 3 9 5 3 4 1 1 7 2 9  1374923 I 1 4 7 5 9 4 3 3 1 7 1 9  
1545 ~ 3 5 2 5 5  5 1 2 7 3 9 3 2 1 5 7 9 3 3 3 1 7 1 9 4 3 1 1 4 7 5 9 2 3 1 3 7 4 9 1 3 4 1 1 7 2 9 5 3  
1545 553525 5 2739 351 57 93321 7 194331 47 5923 11 3749 13 1 17295341 

1545 5 5 n ~  ~ 4331 7 1 5 ~  4759 13 13749 4] 17 39 25 45 ,,5 55 51 27 3+ 3 21 57 5 n 19 41 42 27 29 58 37 49 13 5237 933~ 114959~31 15 45 35 55 5 25 4 7 5 9 2 3 1 1 7 1 9  2 7 3 9 3  4 3 3 1 1 7 2 9 5 3 4 1 3 7 4 9 1 3 1  
1 5 4 5 3 5 5 5  3 9 3 5 1  9332157 3 1 7 2 9 5 3 4 1 1 7 4 9 1 3 1 3 7  1 5 ~ 2 5 ~ I ~  ~ ~ 5, 9 ~ 23114719 43 

51 27 33 21 11 47 59 43 31 7 19 33 41 17 29 13 i 37 49 

Fig. 5. The Fourier transform matrix Fp(60) produced by the group M. 
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And finally, on the diagonal, the set of points 
equivalent to 1, 

U(60) = [1] = 1, 37, 49, 13, 31, 7, 19, 43, 41, 17, 29, 

53, 11, 47, 59, 23 

/~e(1;1)= 31 41 1 

37 49 13 

® 49 13 1 37"~ 

13 1 37 49] ! 

in Z6o x Z6o x Z6o, where 

T =  -1 . 

0 

Furthermore, we must extend U(60) to act in 3- 
space; so for u ~ U(60) we consider u acting as 

m u  = t /  

1 

The off-diagonal blocks are also made up of repeti- 
tions of tensor skew-circulant matrices. This repeti- 
tion is the result of the fact that the groups of the 
points are not the same and a precise prescription of 
this phenomenon is beyond the scope of this paper. 
Suffice it to say that the patterns discernible by the 
eye in Fig. 5 are perfectly regular and can be coded 
in a program to compute the Fourier transform 
efficiently on 60 points. 

VI. Symmetry on 60 × 60 x 60 points. 

Until now everything in this paper has been construc- 
tive and explicit. Since 6 0 x 6 0 × 6 0 =  216 000, to list 
our constructions explicitly for a problem of this size 
is impossible. Even though our methods will reduce 
this problem by the threefold symmetry of P3, we 
still must deal with approximately 216 000/3 = 72 000 
points. We will therefore adopt an existential dis- 
cussion, pointing out that certain objects exist, and 
continue to state their properties. 

In the actual computer program for the calculation, 
each of these objects has to be constructed by an 
algorithm. Since this requires considerable technical 
discussion, we have delayed it to a second paper. 

Putting together the suggestive ideas of the preced- 
ing sections, for the case of 60 points in three 
dimensions, we must investigate the ordering induced 
by U(60) on Z60XZ6o x Z6o, and the effect of the 
symmetry group P3 on that ordering. 

We let P3 be the three-dimensional space group 
given in International Tables for Crystallography 
(1983) with equivalent positions given by 

x, y, z; ~, x - y ,  z; y - x ,  :~, z. 

P3 can be written as the matrix group { 1, T, T 2} acting 
o n  

The set mu such that u 6 U(60) = M is now an ordered 
group as in § III. Then Tm~, = m,,T for all u ~ U(60). 
Let C M  be the Abelian group mu, Trnu, T2m,, of 
3 x 16 = 48 elements. As a group acting in Z6o x Z6o x 
Z6o, C M  has an asymmetric unit. This asymmetric 
unit can be enlarged to a P3-asymmetric unit A which 
is M invariant. The fact that A is M invariant means 
that when we restrict the finite Fourier transform 
matrix to A it will be made up of large tensor skew- 
circulant blocks. 

A can be chosen so that it is the disjoint union of 
Ao and A1, A = Ao v A~, where Ao are the fixed points 
under P3 and AI are those points moved by P3. 
Further, Ao and A~ are M invariant, i.e. M(Ao)  = Ao 
and M(A1)  = Al .  

Now we can view M acting as a group on Ao and 
A~ and as such it has asymmetric units in each space. 
But this action has been described in § V; i.e. each 
asymmetric unit is described by a certain number of 
points and their groups. Let us write Ao.<,~.~.~,> for those 
points whose groups are (a,/3, 3') in an asymmetric 
unit for M in Ao, and, similarly, A~.<,~.13.~> in A~. Now, 
as we saw in § V, M orders Z6o. Using this order, we 
can order Z6o × Z6o x Z6o lexicographically. As subsets 
of Z6o x Z6o X 7,60 , Ao,(a,/3,3, ) and A~,<~.13,v> are ordered. 
And, as before, we order the subgroups (0, 0,0), 
(0, 1, 0), (0, 0, 1 ) , . . . ,  (1, 1, 1). 

Since Z 6 0 × Z 6 0 × Z 6 0 = A o v A l v  T(AI) v T2(A1), 
just as in § IV, the whole space is ordered if we agree 
that A o < A I < T ( A ~ ) <  T2(A~). With this order we 
have defined the finite Fourier transform matrix on 
60 × 60 × 60 points. It is clear that it will restrict to a 

transform of Ao v A~ to Ao v A1 that respects P3 sym- 
metry and that the resulting blocks will be the sums 
of three blocks corresponding to I, T, T 2. 

It remains only to sketch a proof that each of the 
blocks is tensor skew-circulant or a repetition of 
tensor skew-circulant matrices. As in § V, we shall 
only discuss blocks near the diagonal, but as in the 
case of Fp(60), the other blocks, while more difficult 
to discuss (we need to introduce a lot of new nota- 
tion), are in fact easy to compute because of the 
repetitions in their structure. 
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Let us extend our notation for blocks: if 
a 

b and 

c 

are equivalence classes in Ao or AI under the action 
of M, let Bv(x , y, z; a, b, c) be the block in the finite 
Fourier transform matrix Fv(60 x 60 x 60) corre- 
sponding to that part of the transform which carries 
the set of points 

t o  . 

A 

Let Bp(x, y, z; a, b, c) be the corresponding block of 
exponents. 

Our condition that Bv(x , y, z; a, b, c) be near the 
diagonal is the requirement that the sample points 
have the same group, G(a, b, c) = G(x, y, z). Suppose 
G(a, b, c)= 1, g~,..., g,,; then by our ordering we 
have 

= ,g~ , . . . , g , ,  , 

and 

= g l  , , gn , . . . .  

With this notation we can explictly calculate the 
blocks Bp(x, y, z; a, b, c). We have 

ax + by + cz 

agl x ÷ bgly + cglz 

l ag,,x + bg, y + cg,,z 

g l ' ' "  

gig1 ... 

gig,, • • • 

(i)/ 
A {g,x  
Bp(x, y, z; a, b, c) = [glY] 

\glz] 

lgg~z) 

ti =(ax+by+cz) g' 

11 

Now by our construction of the group (a, fl, Y) = 
G(a, b, c) the resulting matrix is tensor skew cir- 
culant. We shall be content to give three example 
calculations• For (a, fl, Y) = (0, 1, 0) = 1, 41 we have 

°=(41141 411) 
(where all arithmetic is done modulo 60); for 
(1 ,1 ,0)=  1,41,31,11, 

1 41 31 11 / 

41 41.41 31.41 11.41 

31 41.31 31.31 11.31]  
/ 

11 41.11 31.11 11 .11 /  

( 1  41 31 11) ( 
__ 4 1  1 11 31 1 

1 11 1 4 31 

1 31  41  

31) 0(41 41). 
And finally for (1, 1, 1) = U(60) it can be verified that 
the matrix is given by 

1 37 49 1311 

31 41 ® 49 13 1 37 "~ 

13 1 37 49]  
! 

Let us summarize what we have achieved• For the 
case of the three-dimensional finite Fourier transform 
on 60 x 60 x 60 points subject to the threefold crystal 
symmetry P3, we have introduced an order on the 

gl 
• • •  g n  

glax+glby+glcz ... 

glaglx + glbg~y + glcglz ... 

g~ ag,x + gl bg,,y + gl cg,,z ... 

gnax + g,,by + g, cz I 

g'~g, agaglX x ++ gg'~,blggl, Yy ++ gg",Cgcgl, Zlz / 

gn) 
gig, 

g,,g, 

= (ax + by+ cz)G. 
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points, using a multiplicative group M, that produces 
a matrix of a particularly nice form. Further, it 
restricts to an asymmetric unit for P3 on the space 
reducing the size of the matrix by 1/9. Furthermore, 
the resulting matrix has the same tensor skew- 
circulant form as the big matrix and so can be used 
to compute the transform using the same efficient 
algorithms as the original transform. 

As we have suggested earlier, the technical details 
in the resulting algorithm will be the subject of 
another paper where the construction of the asym- 
metric unit and all the blocks will be shown. 

Summary 

The finite Fourier transform on N data points is 
simply the evaluation of an N × N matrix times an 
N-vector to produce an N-vector result. The straight- 
forward method of matrix multiplication requires a 
number of operations proportional to N 2. In terms 
of computer programming, the time required to com- 
pute the result, say Ts(N) ,  would quadruple if the 
input size were doubled. We can express this by 
writing Ts (N)  = C N  2 where C is a constant depend- 
ing, amongst many things, primarily on the machine 
on which the program is run and the coding of the 
program. Typical values of C are in the range of 40 ~s 
for the VAX-11/785 to 400 ns for the CRAY X-MP. 
So even for moderate-size problems, say N = 100 to 
10 000, the range of observed times is significant; 
measured in seconds to hours. 

The remarkable aspect of the Fourier transform is 
that there exist 'fast' or 'efficient' methods which do 
the same evaluation in a time proportional to 

N log N, or T e ( N )  = K N  log N where K is another 
constant, approximately the same as C. This means 
that using 'fast' methods reduces time costs for real 
problems by several orders of magnitude. 

For problems in crystallography, the finite Fourier 
transform is run many times for the same space group 
on the same number of points. This problem has led 
to efforts to use the symmetry of the data to reduce 
N by the order of the group to save time and space 
in calculating the result. For groups built from P2 
Ten Eyck (1973) was able to achieve both. Bantz & 
Zwick (1974) were able to use symmetry to reduce 
memory requirements for nearly all space groups. 

The advantage of the approach presented in this 
paper is that we can use symmetry to reduce the data 
and still use an efficient N log N evaluation method. 
Although much work needs to be done to develop 
algorithms for all the space groups, the general 
method presented here shows that such algorithms 
exist. In principle, each group and each grid size leads 
to a different program. However, the methods presen- 
ted in this paper enable us to generate these programs 
automatically. Moreover, by the very nature of the 
algorithms developed they can be naturally parti- 
tioned to calculate structures larger than available 
high-speed memory. 
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Abstract 

A method is described of expanding a molecular 
fragment for use in Patterson search procedures by 
the rotation of part of a model about a bond direction 
with respect to a fixed fragment, allowing the removal 
of an important degree of freedom in the model. The 
function has been incorporated into a computer pro- 
gram and it has been found possible to orient very 
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small partial fragments in this way. The consequent 
expansion of a search model should assist in struc- 
tural solution. 

Introduction 

The basis of Patterson search techniques lies in the 
provision of a reasonable model fragment for com- 
parison with the observed data. In the reciprocal- 
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